

PGP keyid collisions

64 bits are kinda small

Evil 32
● evil32.com
● GPG did not verify to full fingerprint
● patched since June 2014
● GPG v1 still displays 32bit keyids

PGP keyid
● last 64 bits of the PGP fingerprint

gpg --keyid-format long --list-key sprecher.m@gmail.com

pub rsa4096/BB773AC8D5836ABD 2011-09-18 [SCA]

 A5B48124C99B59CAB3548849BB773AC8D5836ABD

PGP fingerprint
● SHA1(timestamp + public key)
● with some extra seasoning

PGP fingerprint
00000000: 9900 8d04 2c85 36df 0104 00ae c406 0100

00000010: bda0 fbfe 94fb b305 13a8 a118 7ca1 86d3

00000070: 3baf dcab d02f 3224 f1d8 eee5 abbd 4c4b

00000080: 5a81 0f6a 31d8 378a 2423 8300 1101 0001
● ID, length (16bit big endian), version, timestamp (32bit big endian)
● algorithm, length public key (in bits, 16bit big endian), public key
● length exponent (in bits, 16bit big endian), exponent

bc1196ce6574ba12cb3a6a37b10ba5ed6bb70707

creating collision
● 64 bit is still a large number
● 18,446,744,073,709,551,616
● using a GTX 1080 would take ~36 years
● guestimated (don't take my word for it)
● what if we control both keys?

naive approach
1. generate many RSA keys
2. store the keyids in a lookup table
3. generate a new RSA key
4. check if the keyid in the lookup table
5. repeat step 3 and 4 until one matches

 RSA is slow (compared to SHA1)

better approach
● timestamp is part of the fingerprint
● 2^32 fingerprints for each RSA key

POC
1. generate one RSA key (let's call it good)
2. change timestamp (1.1.2000 – 2.11.2018)
3. store keyid and timestamp in a Judy array
4. generate evil RSA key
5. loop through possible timestamps
6. check if keyid exists in Judy array
7. profit

POC

got it!

real impact?
● GPG won't import duplicate keyids
● GitHub and gitea do the same check
● «unnamed software» doesn't (POC pending)
● your idea?

Questions?

